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rectangular and circular geometry and examined their relation-

ship to bilinear expansions for Green’s functions attendant to

familiar Sturm–Liouville boundary value problems. Other coor-

dinate systems and cross sections give rise to identities involving

Mathieu functions, confluent hypergeometric functions, and so

on. These topics are the subject of further investigation.
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Self-Consistent Finite/Infinite Element Scheme for

Unbounded Guided Wave Problems

KAZUYA HAYATA, MASASHI EGUCHI, AND

MASANORI KOSHIBA, SENIOR MEMBER, IEEE

Abstract —An efficient finite-element approach for the eigenmode anal-

ysis of unbounded guided wave problems is described using decay-type

infinite elements. To determine an optimum set of decay parameters, two

algorithms based on successive approximation are presented and their

valfdity is checked via the application to an optical fiber problem.

I. INTRODUCTION

It is well recogr@ed that difficulty is frequently encountered

when one wants to solve unbounded field problems using finite

elements. To overcome this difficulty, these unbounded domains

have in the past been dealt with in various ways, all of which

have strengths and weaknesses. To date the main methods in

guided wave problems have been simple truncation [1]-[4], the

use of analytical far-field solutions [5], the decay-type infinite

element approach [6], [7], the exterior finite element approach [8],

and the conformaf mapping technique [9]. The simplest technique

among them is undoubtedly the simple truncation, in which the

unbounded domain is truncated to a finite size. However, this
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Fig. 1. Infinite elements.

technique involves a very large number of nodal points when the

field extends farther away from the guiding region. Among other

methods the decay-type infinite element approach, in which a

finite element is extended to infinity, is often simple and eco-

nomical and has now been applied successfully to a wide range of

problems [10], [11]. A pending question in applying this method

is the determination of unknown parameters involved which

represent decaying behavior in a far-field region. Although al-

most all of the authors to date have mentioned this problem, no

systematical algorithm for determining the decay parameters has

yet been developed [6], [7], [10], [11].

In this paper, a self-consistent finite/infinite element scheme

that can be- used for the eigenmode analysis of unbounded

dielectric waveguide problems is developed. To determine the

decay parameters involved, two algorithms based on successive

approximation are proposed and their validity is examined by

means of the application to an optical fiber problem. By using

these algorithms, an optimum set of decay parameters is readily

obtainable in a self-consistent iterative way.

II. DETERMJNATION OF AN OPTIMUM SET OF DECAY

PARAMETERS

Consider strip-like infinite elements shown in Fig. 1 and ex-

pand the field $ in each element as

+= {~}’{+}= (T: transposition) (1)

where { N } is the shape function vector of the infinite elements

and {@}, is the nodal vector for each element.

As a trial function for semi-infinite directions, we choose the

following decay function:

f(f; c)=exp{-c(f-~o)p} (c>o,p>o.5) (2)

where c is the unknown decay parameter and ($, .$O,c) =

(x, Xo, aX), (y, -yO,a,,). If p is set to unity, (2) is reduced to the

exponential function [6], [7], [10], [11]; we choose p = 1 in the

following description.

To determine systematically the best value of c, we propose

here the following two algorithms:

A. A Method Utilizing the Field Profile in a Finite Element Region

Fig. 2 shows a schematic illustration of a field profile on the

axes. We approximate the field ~ near the points X., yO as

@(x, O)=uoexp {–aX(x–xO)} (3)

~(o,.v)=uoexp{-~,(y-ye)}. (4)

If we choose other points (xl, U1) and ( yl, VI ) corresponding to

the nodes in a finite element region, the unknown parameters
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Fig. 2 Schematic illustration of field profile on axes. The region x $-xO,
.V < y. is divided into finite elements, while the region x > XO, y > y. is

divided into infinite elements shown in Fig. 1,
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TABLE I
EFFECTIVEINDEX OF FUNDAMENTAL MODE

Number of B/kO for ~a = 6

iterations Algorithm (a) Algorithm (b)

(m a
x’ Y)

(ii)

1 1.46041(0.052, 0“.052) 1.46029(0.012)

2 1.46042(0.050, 0.050) 1.46041(0.020)

3 1.46042(0.050, 0.0S0) 1.46044(0.024)

4 1.46042(0.050, 0.050) 1.46044(0.024)

Simple truncation: 1.45837

Exact calculation: 1.46018
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Fig. 3. Element dwision for optical fiber, The sohd and broken meshes

correspond to the finite andinfimtee lements,r espectively.

(a)

aX, a), areobtained from (3) and(4):

lnlul/uOl lnlvl/uOl
LYx= , a, = (5)

x~ — xl YO– Y1 “

An optimum set of the parameters can be derived self-con-

sistently via the following iterative scheme:

(i)

(ii)

(iii)

(iv)

Assign initial values to riX and ay inan arbitrary way.

Solve the matrix equation to obtain Uo,ul, uo, ul as an

eigenvector.

Calculate crX and a, according to(5).

Iterate the above procedures (ii) and(iii) until thesolu-

tionconverges within required accuracy.

B. A Method Using the Transverse Wavenumber ina Cladding

Region

The procedure described herein is simpler than that described

above and is easy to manage without knowledge of the field

profile. In this procedure the decay parameters aX, crY are ob-

tained using the transverse wavenumberin a cladding region:

ax=a,=j(/32–n~,k~) =a (6)

where/3 is the phase constant of the waveguide, ncl the refractive

index in the cladding, and k. the free-space wavenumber. Also

0.71
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0.14

(b)

-’ 15

Fig. 4 Magnetic-field distribution m cross section; mrmber of iterations

(a) Algorithm A. (b) Algorithm B
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in this case, an optimum value of the parameter a can be

determined self-consistently tia the following iterative scheme:

(i) Assign an initiaf value to a in an arbitrary way.

(ii) Solve the matrix equation to obtain k~ as an eigenvalue

(note that ~ is given as an input datum).

(iii) Calculate a according to (6).

(iv) Iterate the above procedures (ii) and (iii) until the solu-

tion converges within required accuracy.

Although this method includes only one decay parameter, it

does not require the calculation of the eigenvector.

III. NUMERICAL EXAMPLE

To demonstrate the power of the present algorithms, we con-

sider a round optical fiber since its exact solution is readily

available. Making use of symmetry nature, we divide only one

quarter of the cross section into quadratic finite and infinite

elements, as illustrated in Fig. 3. As a finite element scheme, we

use the scalar formulation [2], [3].

Table I exhibits an example of the analyzed results, where the

index difference A = 1 percent, nC1=1.46, and /3a = 6 (a: core

radius), and the initial set of the parameters is a, /~ = a, /~ = 0.1.

Note that ~a = 6 corresponds to a case very near cutoff. It is

readily found from the table that sufficiently accurate solutions

are obtainable only with one time of iteration. On the other hand,

the solution for the simple truncation, in which the boundaries

x = XO, y = YO are assumed to be perfect conducting walls and

no infinite elements are added to them, is far less accurate than

that for the present algorithms.

Fig. 4 displays an example of the field distributions in the cross

section. In this figure the region IXl >7, IYI >7 corresponds to

that divided into infinite elements. It is seen from the figure that

the interface between finite-element and infinite-element regions

is smooth in spite of only one time of iteration.

IV. CONCLUSIONS

A self-consistent finite-element approach for the eigenmode

analysis of unbounded waveguides has been proposed using

decay-type infinite elements. Two algorithms have been described

for the determination of the unknown decay parameters. Through

the application to the eigenmode anrdysis of an opticaf fiber, the

power of this approach has been successfully demonstrated.
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Analysis of Coupled Microslabm Lines

BRIAN YOUNG AND TATSUO ITOH, FELLOW, IEEE

Ab.@act — Symmetrically coupled Microslab lines are analyzed with a

mode-matching method to build design charts for the propagation constant

and characteristic impedance. Results are provided for GaAs/afrrmina

Microslab implementations.

I. INTRODUCTION

Microslab is a novel low-loss quasi-planar waveguide intended

for use at millimeter-wave frequencies [1]. The single-line imple-

mentation has been studied and the results appear in [2], where a

design procedure is presented which minimizes conductor loss,

and design charts are given for implementation on GaAs sub-

strates. This paper extends that work by analyzing the symmetri-

cal coupled-line Microslab configuration. Design charts are pro-

vided for GaAs/alumina implementations to complement the

results in [2], The design charts to complete the GaAs implemen-

tation for insulating layer dielectric constants of 8.2 and 11.5 are

not included due to the lack of space.

II. ANALYSIS

The ana3ysis method used to build the design charts is the

mode-matching method. The particular procedure is based on the

one used in [2]. The method is outlined below to provide the

additional details necessay for the coupled-line implementation.

The symmetrically coupled Microslab is shown in Fig. 1. The

metallizations are perfectly conducting with zero thickness, and

the dielectrics are lossless. A cover plate is added to the structure

to discretize the eigenvalue spectrum [3]. Since the strips have

equaf widths, the structure can be divided rdong the plane of

symmetry with a magnetic (electric) wall to eliminate the odd

(even) modes. The divided structure is further subdivided into

four regions as shown in Fig. 2 for modal expansion. Extra

dielectrics are added to the left and right of the strip in regions 1

and 4 to facilitate checking the program.
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