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rectangular and circular geometry and examined their relation-
ship to bilinear expansions for Green’s functions attendant to
familiar Sturm-Liouville boundary value problems. Other coor-
dinate systems and cross sections give rise to identities involving
Mathieu functions, confluent hypergeometric functions, and so
on. These topics are the subject of further investigation.
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Self-Consistent Finite /Infinite Element Scheme for
Unbounded Guided Wave Problems

KAZUYA HAYATA, MASASHI EGUCHI, AnD
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Abstract — An efficient finite-element approach for the eigenmode anal-
ysis of unbounded guided wave problems is described using decay-type
infinite elements. To determine an optimum set of decay parameters, two
algorithms based on successive approximation are presented and their
validity is checked via the application to an optical fiber problem.

I. INTRODUCTION

It is well recognized that difficulty is frequently encountered
when one wants to solve unbounded field problems using finite
elements. To overcome this difficulty, these unbounded domains
have in the past been dealt with in various ways, all of which
have strengths and weaknesses. To date the main methods in
guided wave problems have been simple truncation [1]-[4], the
use of analytical far-field solutions [5], the decay-type infinite
element approach [6], [7], the exterior finite element approach [8],
and the conformal mapping technique [9]. The simplest technique
among them is undoubtedly the simple truncation, in which the
unbounded domain is truncated to a finite size. However, this

Manuscript received May 20, 1987; revised October 5, 1987

The authors are with the Department of Electronic Engineering, Hokkaido
Umversity, Sapporo, 060, Japan.

IEEE Log Number 8718868.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 36, NO. 3, MARCH 1988

e el (e o) o0
[s0]
b
TL______ o y = yO o0
X = XO (Xox )’O)
Fig. 1. Infinite elements.

technique involves a very large number of nodal points when the
field extends farther away from the guiding region. Among other
methods the decay-type infinite element approach, in which a
finite element is extended to infinity, is often simple and eco-
nomical and has now been applied successfully to a wide range of
problems [10], [11]. A pending question in applying this method
is the determination of unknown parameters involved which
represent decaying behavior in a far-field region. Although al-
most all of the authors to date have mentioned this problem, no
systematical algorithm for determining the decay parameters has
yet been developed [6], [7], [10], [11].

In this paper, a self-consistent finite /infinite element scheme
that can be used for the eigenmode analysis of unbounded
dielectric waveguide problems is developed. To determine the
decay parameters involved, two algorithms based on successive
approximation are proposed and their validity is examined by
means of the application to an optical fiber problem. By using
these algorithms, an optimum set of decay parameters is readily
obtainable in a self-consistent iterative way.

II. DETERMINATION OF AN OPTIMUM SET OF DECAY
PARAMETERS

Consider strip-like infinite elements shown in Fig. 1 and ex-
pand the field ¢ in each element as

¢={N}"{o}. (1)

where { N} is the shape function vector of the infinite elements
and { ¢}, is the nodal vector for each element.

As a trial function for semi-infinite directions, we choose the
following decay function:

(&) =exp{—c(§-4)"} @)

where ¢ is the unknown decay parameter and (§,£,,¢)=
(%, %, ), (¥, Y- @0,). If p is set to unity, (2) is reduced to the
exponential function [6], [7], [10], [11]; we choose p =1 in the
following description.

To determine systematically the best value of ¢, we propose
here the following two algorithms:

(T: transposition)

(¢c>0,p>0.5)

A. A Method Utilizing the Field Profile in a Finite Element Region

Fig. 2 shows a schematic illustration of a field profile on the
axes. We approximate the field ¢ near the points x,, y;, as

¢(x,0)=uoexp{—ax(x—x0)} (3)

¢(0,y) =erXP{”"v()"yo)}' 4

If we choose other points (x;, u;) and (y,,v;) corresponding to
the nodes in a finite element region, the unknown parameters
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Fig. 2 Schematic illustration of field profile on axes. The region x < xg,
¥ <)y is divided into finite elements, while the region x> x,, y >y is
divided into infinite elements shown in Fig. 1.
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Fig. 3. Element division for optical fiber. The solid and broken meshes
correspond to the finite and infinite elements, respectively.

a,,a, are obtained from (3) and (4):

_ In ju, /ug)
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An optimum set of the parameters can be derived self-con-
sistently via the following iterative scheme:

(i)  Assign initial values to a, and «, in an arbitrary way.
(ii) Solve the matrix equation to obtain uy, u;, vy, v; as an
eigenvector.,

Calculate «, and a, according to (5).

Iterate the above procedures (ii) and (iii) until the solu-
tion converges within required accuracy.

(ii)
(iv)

B. A Method Using the Transverse Wavenumber in a Cladding
Region

The procedure described herein is simpler than that described
above and is easy to manage without knowledge of the field
profile. In this procedure the decay parameters «,,a, are ob-
tained using the transverse wavenumber in a cladding region:

=0, =/( B> - njki) =« (6)

where B is the phase constant of the waveguide, n the refractive
index in the cladding, and k, the free-space wavenumber. Also
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TABLE 1
EFFECTIVE INDEX OF FUNDAMENTAL MODE
Number of B/k0 for Ba = 6
iterations Algorithm (a) Algorithm (b)
@y 8 &)
1 1.46041(0.052, 0.052) 1.46029(0.012)
2 1.46042(0.050, 0.050) 1.46041(0.020)
3 1.46042(0.050, 0.050) 1.46044(0.024)
4 1.46042(0.050, 0.050) 1.46044(0.024)
Simple truncation: 1.45837
Exact calculation: 1.46018
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Fig. 4 Magnetic-field distribution 1n cross section; number of iterations =1.
(a) Algorithm A. (b) Algorithm B
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in this case, an optimum value of the parameter a can be
determined self-consistently via the following iterative scheme:

(i)  Assign an initial value to « in an arbitrary way.

(i) Solve the matrix equation to obtain k2 as an eigenvalue
(note that B is given as an input datum).

Calculate a according to (6).

Tterate the above procedures (ii) and (iii) until the solu-
tion converges within required accuracy.

(iif)
(iv)

Although this method includes only one decay parameter, it
does not require the calculation ~f the eigenvector.

III. NUMERICAL EXAMPLE

To demonstrate the power of the present algorithms, we con-
sider a round optical fiber since its exact solution is readily
available. Making use of symmetry nature, we divide only one
quarter of the cross section into quadratic finite and infinite
elements, as illustrated in Fig. 3. As a finite element scheme, we
use the scalar formulation [2], [3].

Table I exhibits an example of the analyzed results, where the
index difference A =1 percent, ny =1.46, and Ba==6 (a: core
radius), and the initial set of the parametersis a, /8=a, /8= 0.1.
Note that Sa =6 corresponds to a case very near cutoff. It is
readily found from the table that sufficiently accurate solutions
are obtainable only with one time of iteration. On the other hand,
the solution for the simple truncation, in which the boundaries
X=Xx,, y=, are assumed to be perfect conducting walls and
no infinite elements are added to them, is far less accurate than
that for the present algorithms.

Fig. 4 displays an example of the field distributions in the cross
section. In this figure the region |X|> 7, |Y|> 7 corresponds to
that divided into infinite elements. It is seen from the figure that
the interface between finite-element and infinite-element regions
is smooth in spite of only one time of iteration.

IV. CONCLUSIONS

A self-consistent finite-element approach for the eigenmode
analysis of unbounded waveguides has been proposed using
decay-type infinite elements. Two algorithms have been described
for the determination of the unknown decay parameters. Through
the application to the eigenmode analysis of an optical fiber, the
power of this approach has been successfully demonstrated.
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Analysis of Coupled Microslab™ Lines

BRIAN YOUNG anp TATSUO ITOH, FELLOW, IEEE

Abstract —Symmetrically coupled Microslab lines are analyzed with a
mode-matching method to build design charts for the propagation constant
and characteristic impedance. Results are provided for GaAs/alumina
Microslab implementations.

I. INTRODUCTION

Microslab is a novel low-loss quasi-planar waveguide intended
for use at millimeter-wave frequencies [1]. The single-line imple-
mentation has been studied and the results appear in [2], where a
design procedure is presented which minimizes conductor loss,
and design charts are given for implementation on GaAs sub-
strates. This paper extends that work by analyzing the symmetri-
cal coupled-line Microslab configuration. Design charts are pro-
vided for GaAs/alumina implementations to complement the
results in [2]. The design charts to complete the GaAs implemen-
tation for insulating layer dielectric constants of 8.2 and 11.5 are
not included due to the lack of space.

II. ANALYSIS

The analysis method used to build the design charts is the
mode-matching method. The particular procedure is based on the
one used in [2]. The method is outlined below to provide the
additional details necessary for the coupled-line implementation.

The symmetrically coupled Microslab is shown in Fig, 1. The
metallizations are perfectly conducting with zero thickness, and
the dielectrics are lossless. A cover plate is added to the structure
to discretize the eigenvalue spectrum [3]. Since the strips have
equal widths, the structure can be divided along the plane of
symmetry with a magnetic (electric) wall to eliminate the odd
(even) modes. The divided structure is further subdivided into
four regions as shown in Fig. 2 for modal expansion. Extra
dielectrics are added to the left and right of the strip in regions 1
and 4 to facilitate checking the program.
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